Catalytic Approaches to Green Polymer Synthesis
Polymers are and will continue to be an integral material for modern manufacturing and consumer goods. Their sustainability in terms of feedstocks, degradability and environmental impact is critical to their evolution and future applications. Society’s need for versatile and high-performing materials must be balanced by the need for products that favor a circular economy and do not exasperate the global problem of waste and environmental pollutants. The search for catalysts that are effective for the synthesis of new polymers from abundant, renewable feedstocks continues to be central to these aims. In addition, catalytic processes that enable the controlled degradation of the polymers to potentially recyclable starting materials are important.
The questions this symposium aims to address include: Can polymers be made using energy efficient processes? Can the polymers be designed with end-of life considerations? What would be the fate of these materials in the environment? What performance can be gained from using the principles of Green Chemistry in the synthesis of new polymers? How can ideas be taken from exploratory research to the market?
Organizers
Prof. Christopher Kozak, Memorial University of Newfoundland
Prof. Megan Fieser, University of Southern California
Nominal SPonsors
Inorganic Chemistry (DIC)
Polymer Chemistry (POLY)