26th Annual Green Chemistry & Engineering Conference

Connecting Chemistry with the UN Sustainable Development Goals

Organizers: Edward Brush, Department of Chemistry, Bridgewater State University, Bridgewater, MA; Grace Lasker, School of Nursing and Health Studies, University of Washington Bothell, Bothell, WA

In 2015, the United Nations adopted a set of 17 Sustainable Development Goals (SDGs) as part of a global agenda to improve the lives of people by addressing world-wide challenges of poverty, protecting the planet and ensuring prosperity for all. There is excellent potential for the chemistry enterprise to make significant contributions to help achieve these goals. However, the chemistry enterprise must commit to a transition to systems and life cycle thinking approaches; consider the source of all chemicals and their transformations; their end of life fate; and impacts on people, the environment and the economy.

This symposium will take advantage of the joint meeting with the International Green and Sustainable Chemistry Conference to engage an international audience with multidisciplinary and multicultural perspectives, sharing their views on the U.N. SDGs, and exploring how innovative green and sustainable chemistry technologies can contribute globally to human rights, social equity and environmental justice. Discussing these issues will help advance the chemistry enterprise to achieve sustainability, assist those being trained to enter the workforce, and help better communicate the societal benefits of green and sustainable chemistry technologies.

Critical to the success of this symposium will be contributions from all sectors of the chemistry enterprise (academia, industry, funding agencies, policy, professional organizations, national and international partners), plus those not directly involved in chemistry. We will all need to collaborate around a central theme where the SDGs are a strategic priority. A goal of this symposium is to create a graphic systems map that will outline how chemists can partner with stakeholders both inside and outside the chemistry enterprise, and collaborate in advancing the UN SDGs.

Exploring Green Chemistry Innovations in Plastics to Help Protect our Oceans

Organizers: Carol Henry, ACS Committee on Environmental Improvement, Portland, Oregon, USA; Robert Giraud, ACS Committee on Environmental Improvement, Wilmington, Delaware, USA

As the World Economic Forum (2016) reports, over 30% of plastic packaging materials “leak” into the oceans and other natural systems. They attribute this leakage in part to inadequate plastics recycling. Low recycling rates in the U.S. stem from decades of physical recycling approaches that have often resulted in degraded properties. New chemistry-based approaches are needed to prevent leakage of plastics into nature. In some cases, chemical recycling promises to economically recover the material value of polymers at the end of first life. In others, advances in chemical technology can promote the use of end-of-life plastics as feedstocks or significantly improve physical recycling. Either way, sustainably closing the loop on plastics to prevent further leakage into the oceans requires application of green chemistry and engineering.

This symposium will bring together environmental, business, chemistry, and engineering perspectives to connect problems with solutions and commercial implementation thereof. While others focus on design and commercialization of biobased and degradable polymers, this symposium will concentrate on the application of chemistry to recover or enable recovery of the material value of plastics at end of first life.

A panel discussion at the end of the session will discuss questions such as: (1) How can polymers be redesigned to meet the property needs currently served by complex materials in laminate packaging? (2) What chemical technology can be applied to enhance separation of mixed plastics? (3) How can end of first life plastics be sustainably transformed into valuable chemical products? (4) What is needed to sustainably depolymerize end of first life plastics to enable reuse as monomers? (5) How can conventional polymers be redesigned to facilitate recovery and reuse?

Closing the Loop on Critical Elements

Organizers: David J. C. Constable, Science Director, ACS Green Chemistry Institute, Washington, DC, USA; Xianlai Zeng, Associate Professor, School of Environment, Tsinghua University, Beijing, China

There is a growing list of elements that are considered strategic metals; they are rare, expensive, and heavily relied upon for electronics, energy and chemistry. The current methods of extracting, purifying and using these metals is unsustainable and as these materials approach impending extinction from the supply chain while escalating environmental and socioeconomic costs across the world, it is critical to identify low-cost and abundant alternatives, or sustainable technologies to recover, recycle and reuse these elements. In general, there have been few chemistry alternatives that could recreate the performance of these metals in a variety of fundamental applications. This session will showcase innovators who are creating alternative chemistries and chemical technology approaches that can increase the sustainable reuse and recycle of these critical elements, or provide comparable functional, commercially viable materials for a variety of applications.

Chemical Technologies for Implementing the Circular Economy

Organizers: John C. Warner, President and Chief Technology Officer, Warner Babcock Institute for Green Chemistry, Wilmington, MA, USA; Mats Linder, Project Manager, New Plastics Economy, Ellen MacArthur Foundation, Isle of Wight, UK

Many companies and organizations are signaling their desire to adopt materials and processes consistent with the Circular Economy. Much attention is being placed on various societal processes to “close the loop” on materials. Unfortunately, the reality is that most materials and processes have been designed without a circular economy in mind, and simply cannot be fit into a “closed loop” model without significant green chemistry inventions. This session will explore various cutting-edge technologies that either (1) help bring exiting materials into a more closed loop or (2) provide new materials that are more consistent with the goals of the circular economy.

Green Chemistry Increases Access to Drugs to Treat Epidemic Diseases

Organizer: Berkeley W. Cue, Jr., Adjunct Professor, Center for Green Chemistry, University of Massachusetts – Boston, Boston, MA

Drugs to treat diseases such as HIV/AIDS, malaria, tuberculosis, hepatitis C and bacterial infections, for example, are available, and for the most part affordable, in Western economies. However, in low- to middle-income countries where these diseases have reached epidemic proportions, many of these drugs are not accessible to large segments of the patient populations, due to both affordability and availability issues. Moreover, to address affordability, active pharmaceutical ingredients (API’s) of these drugs are manufactured in low-cost manufacturing countries like India and China, where poor environmental management by some manufacturers has created an environmental crisis, resulting in increasingly stringent regulatory action by their governments, fines, imprisonment of officials and closure of the most egregious plants. Even a temporary shutdown of these plants could have a big negative impact on the drug supply chain, e.g., decreased access and possibly rationing. An effective approach to protect against this outcome is needed. Green chemistry has been shown to be a powerful solution to both problems, by lowering manufacturing costs and shrinking the manufacturing environmental footprint, and may be the best option for avoiding the kinds of government actions that could interrupt the supply of these life-saving medicines.

Advances in Sustainable Plastic Degradation

Organizer: Love-Ese Chile, Bioplastic Specialist and Consultant, Grey to Green Sustainable Solutions, Vancouver, British Columbia, Canada

Sustainable (bio-derived or biodegradable) plastics have a variety of waste management and recovery options, however, there has been little development of infrastructure and technology to support these processes. This symposium aims to highlight the advances in the waste recovery part of the sustainable plastic lifecycle. Speakers will share their exploration into design strategies for enhanced biodegradation, mechanical, chemical and/or biological recycling of sustainable polymers. Participants will leave with insight into how waste management of sustainable plastics can be further developed to instigate a truly circular plastics economy.

© American Chemical Society. All rights reserved.