24th Annual Green Chemistry & Engineering Conference | June 16 - 18, 2020 | Seattle, WA

Catalysis to Enable a Circular Economy

Contributors: Adelina Voutchkova, Assistant Professor of Chemistry, George Washington University, Washington, DC, USA; Audrey Moores, Associate Professor of Chemistry, McGill University, Montreal, Canada

The pursuit of a circular economy necessitates the development of transformations geared towards the synthesis of benign and non-persistent intermediates and products, as well as transformations that facilitate the breakdown of existing persistent chemicals and polymers. This requires a paradigm shift in the way we design new chemical transformations. Catalytic processes that enable a circular economy should consider both the forward (bond-making) process and reverse (bond breaking) transformations, which can be used to recover the chemical building blocks. The latter will constitute a form of chemical recycling that not only eliminates the need for disposal, but also provides a feedstock that can be reused in circular materials economy. The design of such processes requires a paradigm shift within the catalysis community in order to fill the substantial gap in available processes for catalytic degradation and to ensure that new chemicals and polymers are designed such that they can be chemically or biologically degraded on demand.

This session will convene researchers in homogeneous, heterogeneous and biocatalysis interested in setting the future research agenda of catalysis for the circular economy. Topics of interest will include (but not be limited to) the design of catalytic processes both building and breaking bonds, development of selective and mild catalytic methods for cleavage of synthetic and biopolymers (biomass), and methods for valorization of renewables into benign and non-persistent chemicals (that can be chemically degraded).

Biocatalysis Success Stories

Organizers: Kevin Maloney, Director, Merck Process Chemistry, Rahway, NJ, USA; Jennifer Obligacion, Senior Scientist, Merck Process Chemistry, Rahway, NJ, USA

The facile access to engineered enzymes has led to the widespread adoption of biocatalysis in complex molecule synthesis in both academic as well as industrial laboratories. This session will attempt to highlight the mostly untapped potential of bio-catalysis and protein engineering in developing new synthetic methodologies that unlock new chemical spaces and are green and sustainable. In addition, the chemistry and engineering challenges associated with developing green and sustainable biocatalytic transformations in this context will be discussed, along with several success stories with its implementation.

Catalysis for CO2 Conversion

Organizers: Gonghu Li, Associate Professor, University of New Hampshire, Durham, New Hampshire, USA; Jonathan Rochford, Associate Professor, University of Massachusetts Boston, Boston, Massachusetts, USA

Carbon dioxide (CO2) is a renewable C1 feedstock for the production of chemicals, materials and fuels. Chemical reduction of CO2 has attracted extensive research interests from scientists and engineers from all over the world. However, there are few strategies available for large-scale CO2 utilization. This is mainly due to the lack of scientific breakthrough and technologies that are sufficiently mature for industrial deployment.

This symposium will focus on both the experimental and theoretical design of catalytic systems for efficient CO2 conversion and seeks to promote discussion among the participants on how to bridge the gap between theory and experiments.

Rarity to Abundance: Better Metals for Catalysis

Organizer: Brad Gates, Senior Scientist III, AbbVie Process R&D, North Chicago, IL USA

Organic chemists in academia and industry routinely utilize reactions catalyzed by precious metals such as palladium, platinum, iridium, and rhodium for a number of important transformations. The cost, scarcity, and toxicity of these precious metals have led researchers to search for more sustainable alternatives. Recently, there has been an increasing level in interest in transformations catalyzed by non-precious metals such as copper, iron, cobalt, zinc and nickel. Examples of non-precious metal catalysis can be found in the petrochemical, fine chemical and pharmaceutical industries and in the preparation of fuel cells. This symposium will highlight exciting new advances in the field of non-precious metal catalysis for the development of more sustainable chemistry.