Skip to main content

Implementing Mechanochemistry Processes in Chemical Manufacturing and Research

Organizers: Tomislav Friščić, Assoc. Professor, McGill University, Montreal, Quebec, Canada; Audrey Moores, Assoc. Professor, McGill University, Montreal, Quebec, Canada; James Mack, Professor, University of Cincinnati, Cincinnati, OH, USA

The symposium highlights the emergent opportunities of solvent-free chemical methodologies, notably mechanochemistry, in eliminating or vastly reducing the use of solvents in chemical processes, across research, manufacturing and recycling, biomass conversion, as well as education in environmentally-friendly synthesis. Our aim is to bring together academic and industrial experts, as well as novices in this field to present and learn about the recent accomplishments in understanding the materials- and energy-efficiency of mechanochemical reactions, the fundamentals of underlying kinetics and thermodynamics, as well as potential for industrial implementation, scale-up, recycling and biomass exploitation.

Over the past decade, mechanochemistry by ball milling has emerged as a powerful, uniquely general methodology to conduct reactions in the complete, or almost complete, absence of solvents. There is a growing number of examples in research literature demonstrating that the scope of such mechanochemical reactions can match and even exceed that of traditional processes in liquid solvents. So far, mechanochemical reactivity has been used with success to advance: organic and pharmaceutical synthesis, metal-based, organo- as well as enzymatic catalysis, organometallics, inorganic chemistry, synthesis of a wide range of nano-structured materials (nanoparticle systems, metal-organic frameworks, covalent organic frameworks), as well as activation and recycling of critical elements.

Consequently, it is likely that mechanochemical methodologies could become “Chemistry 2.0”: an effective, safer and cleaner alternative to solvent-based processes, that will eliminate or reduce at least 1000-fold the use of solvents, while also providing access to new reactions, materials and more efficient use of resources. The potential future implementation of mechanochemistry as a replacement of traditional solution chemistry, requires a detailed understanding of the most recent advances in mechanochemical technologies and their industrial potential, as well as of the kinetics and energetics of mechanochemical processes. Consequently, it is the purpose of this symposium to:

  1. Bring together experts in diverse areas of mechanochemistry, with backgrounds in research, industry and chemical education to discuss and present their work along with newcomers to the field.
  2. Highlight and illustrate recent implementations of mechanochemistry in research, industry and chemistry education.
  3. Discuss conventional green chemistry metrics, which have been developed in context of solvent-based synthesis, for addressing solvent-free processes through mechanochemistry or other technologies.
  4. Evaluate the potential of mechanochemistry as a replacement for traditional solvent-free chemistry, identify pitfalls and outline a roadmap to achieving this goal.
  5. Discuss the potential impact of mechanochemical processes and solvent-free chemistry on lifecycle analysis of products and processes.

Making Molecular Separations More Sustainable

Organizers: Boelo Schuur, Associate Professor, University of Twente, Enschede, The Netherlands; Robert Giraud, The Chemours Company, Wilmington, Delaware, USA

The sustainability of the chemistry enterprise depends on the development and adoption of sustainable separations technology. Incumbent separations technology (distillation) is too energy intensive, and often too capital intensive, to allow sustainable recovery of organic solvents or of components from dilute aqueous solution. Today’s industrial reliance on distillation accounts for over 40% of the energy consumption and over 50% of the capital investment of chemical processes. Sholl and Lively (Nature, 2016) note this equates to 10-15% of global energy use. Without sustainable separations technology, companies often incinerate solvents and discharge wastewater after conventional treatment. In both cases, the material value of the streams is lost, and life cycle impact is worsened. Furthermore, the loss of valuable components from dilute aqueous solution is a major threat to the sustainability of new biorefineries and a significant concern when carrying out organic reactions in water. Closing the loop requires new solutions.

The ACS GCI Chemical Manufacturers Roundtable has led the development of a technology roadmap highlighting key research, development, and demonstration needs to accelerate industrial application of sustainable alternative separation (AltSep) processes. Like the AltSep roadmap, this symposium will focus on advances in solid mass separating agent (MSA) process technology (i.e., membrane separation and adsorption). To enable meaningful progress toward a circular economy, the symposium will concentrate on two key topics: (1) recovery of organic solvents and (2) recovery from dilute aqueous solution. By bringing together people interested in these two topics, needs and opportunities can be discussed to lay the groundwork for further research advances and industrial adoption. The session will close with a panel discussion to promote interaction between the speakers and the audience as well as among the speakers.

Deepening the Green and Sustainability Position of Industrial Chemical Processes

Organizers: Mark Benvenuto, Professor of Chemistry, Chairman of the Chemistry & Biochemistry Department, University of Detroit Mercy, Detroit, MI, USA; Heinz Plaumann, Quantum Qik, LLC, Detroit, MI, USA

A large number of papers have been published which propose to improve the profile of some chemical process or product. Many suggest an improvement for one commodity that is manufactured on a scale that many chemists and engineers might claim is large – such as any pharmaceutical commodity – but that is tiny compared to the production of true commodity chemicals. Virtually nothing has been published about greening the major industries and the production of their commodities. Perhaps obviously, a relatively small change in a greener direction for any major industry would result in noticeable improvements in all the major indicators by which we measure global climate change and industrial progress – such as extremes of temperature, atmospheric carbon dioxide concentrations, electrical usage, and waste production, for example. Ultimately, there has been little discussion of how to improve the chemical processes that are the largest in our world. This symposium seeks to address this.

Advances in Process Intensification

Organizer: Aydin K. Sunol, Professor, University of South Florida, Florida, USA

Process intensification encompasses any chemical processing development that leads to a substantially smaller, greener, safer and more energy efficient technology. It is a key futuristic direction already making significant impact in the evolution of the chemical industry. This symposium seeks to assess the state-of-the-art and future developments in this exciting area of process intensification.

Topics include, but are not limited to: process integration, multiphase reactors, chemical looping processes, membrane processes, hybrid processes, micro-reactor systems, High-G reactors, critical region technology and forced unsteady state operations.

Sustainability Success Stories in Industrial Chemical Processing

Organizer: Samy Ponnusamy, Fellow & Global Manager – Green Chemistry, MilliporeSigma

Based on the overwhelming responses from the 2018 session, Industrial Applications of Green Chemistry & Engineering Principles, this session will continue that momentum and expand the conversations and exchanges into result-oriented actions. This session will highlight industry innovations based on green chemistry and engineering principles, focusing on the development, design and life cycle processes. Case studies will be presented to illustrate how companies in different sectors have successfully implemented green chemistry and engineering principles into their processes in “closing the loop”. These examples will describe the design and development process, the challenges faced, and how these barriers were overcome. Additionally, this session will discuss the important collaborations along the value chain and with the stakeholders.

From the session, attendees should be able to understand how academia/industry innovates; industry develops products and processes, and the many factors that contribute to the launch and commercialization of new greener technologies to market. Presenters will be from both industry and academia in order to share the valuable insights of a diverse group on the challenges and opportunities in bringing sustainable chemistries and processes/products to aid global chemistry enterprise.

Advances in Batch to Continuous Flow

Organizer: Tim Braden, Research Scientist, Lilly

The use of continuous flow processing has the potential to positively impact most of the 12 Principles of Green Chemistry. Flow processes have been developed to improve not just chemical reaction steps, but also nearly every related work-up, purification and isolation unit operation. This session will showcase examples of the application and potential of novel continuous flow processes resulting in improved sustainability, efficiency and safety.